Practical Power Distribution

Contents

Chapter 1—Overview

1.1 Introduction 1
1.2 History and growth of power distribution 2
1.3 Benefits of 3-phase AC power system 3
1.4 Typical characteristics of an industrial distribution system 6
1.5 Main components of an industrial distribution system 6
1.6 Main equipment types in an industrial distribution system 7
1.7 Electrical safety and power security 8
1.8 Summary 8

Chapter 2—Distribution System Alternatives

2.1 Voltage classification 9
2.2 Multiple voltage levels in power distribution 10
2.3 Types of distribution arrangements and redundancy 14
2.4 Expandability 19
2.5 Summary 20

Chapter 3—Distribution System Planning

3.1 The need for system planning 21
3.2 Approach to system planning 22
3.3 Data collection 22
3.4 Protection of future growth of electricity demand 24
3.5 Location of key assets 25
3.6 Selection of basic system parameters 26
3.7 Planning of electrical system configuration 27
3.8 Equipment ratings/sizing 28
3.9 Selection of appropriate equipment 29
3.10 Maintainability and expandability 29
3.11 System studies needed for planning 30
3.12 Software packages used for system studies 32
3.13 Summary 33
<table>
<thead>
<tr>
<th>Chapter 4 — Faults in Electrical Systems</th>
<th>35</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1 What is a fault</td>
<td>35</td>
</tr>
<tr>
<td>4.2 Effects of a fault</td>
<td>35</td>
</tr>
<tr>
<td>4.3 Types of faults</td>
<td>36</td>
</tr>
<tr>
<td>4.4 Limiting the damaging effects of a fault</td>
<td>38</td>
</tr>
<tr>
<td>4.5 Need to know the magnitude of fault current</td>
<td>42</td>
</tr>
<tr>
<td>4.6 Fault current calculations and system studies</td>
<td>44</td>
</tr>
<tr>
<td>4.7 Summary</td>
<td>44</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chapter 5 — In-plant Generation and its Integration with Plant Power Systems</th>
<th>47</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.1 Why in-plant generation</td>
<td>47</td>
</tr>
<tr>
<td>5.2 Cost of power interruptions in critical processes</td>
<td>48</td>
</tr>
<tr>
<td>5.3 Types of in-plant generation</td>
<td>50</td>
</tr>
<tr>
<td>5.4 Parallel operation of in-plant generator with external source</td>
<td>51</td>
</tr>
<tr>
<td>5.5 In-plant power generation sources</td>
<td>57</td>
</tr>
<tr>
<td>5.6 Integrating in-plant generation with plant distribution</td>
<td>58</td>
</tr>
<tr>
<td>5.7 Summary</td>
<td>63</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chapter 6 — Transformers</th>
<th>65</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.1 Introduction</td>
<td>65</td>
</tr>
<tr>
<td>6.2 Transformer theory</td>
<td>66</td>
</tr>
<tr>
<td>6.3 Transformer construction</td>
<td>69</td>
</tr>
<tr>
<td>6.4 Transformer cooling</td>
<td>73</td>
</tr>
<tr>
<td>6.5 Transformer voltage control</td>
<td>74</td>
</tr>
<tr>
<td>6.6 Power transformers and distribution transformers</td>
<td>78</td>
</tr>
<tr>
<td>6.7 Installation of transformers</td>
<td>78</td>
</tr>
<tr>
<td>6.8 Special aspects in installation of large power transformers</td>
<td>83</td>
</tr>
<tr>
<td>6.9 Fire protection measures for large transformer installations</td>
<td>89</td>
</tr>
<tr>
<td>6.10 Transformer troubleshooting</td>
<td>89</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chapter 7 — Circuit Breakers</th>
<th>93</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.1 Role of a circuit breaker in a distribution system</td>
<td>93</td>
</tr>
<tr>
<td>7.2 Disconnector/Isolator</td>
<td>94</td>
</tr>
<tr>
<td>7.3 Circuit breakers and their operating principle</td>
<td>94</td>
</tr>
<tr>
<td>7.4 Air circuit breakers</td>
<td>96</td>
</tr>
<tr>
<td>7.5 Oil Circuit Breakers (OCB)</td>
<td>97</td>
</tr>
<tr>
<td>7.6 Minimum (small volume) Oil Circuit Breakers - MOCB</td>
<td>103</td>
</tr>
<tr>
<td>7.7 Air blast circuit breakers</td>
<td>104</td>
</tr>
<tr>
<td>Chapter 8— Medium Voltage Switchgear</td>
<td>115</td>
</tr>
<tr>
<td>--------------------------------------</td>
<td>-----</td>
</tr>
<tr>
<td>8.1 Switchgear options</td>
<td>115</td>
</tr>
<tr>
<td>8.2 Outdoor MV switchgear</td>
<td>116</td>
</tr>
<tr>
<td>8.3 Indoor MV switchgear</td>
<td>117</td>
</tr>
<tr>
<td>8.4 MV switchgear panel configurations</td>
<td>121</td>
</tr>
<tr>
<td>8.5 MV switchgear auxiliary devices</td>
<td>122</td>
</tr>
<tr>
<td>8.6 MV switchgear ratings</td>
<td>123</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chapter 9— Low Voltage Networks</th>
<th>129</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.1 Introduction</td>
<td>129</td>
</tr>
<tr>
<td>9.2 Air circuit breakers</td>
<td>130</td>
</tr>
<tr>
<td>9.3 Moulded case circuit breakers</td>
<td>131</td>
</tr>
<tr>
<td>9.4 Application and selective co-ordination</td>
<td>142</td>
</tr>
<tr>
<td>9.5 Miniature circuit breakers</td>
<td>148</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chapter 10— Protection of Electrical Power Systems</th>
<th>149</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.1 Need for protective apparatus</td>
<td>149</td>
</tr>
<tr>
<td>10.2 Basic requirements of protection</td>
<td>150</td>
</tr>
<tr>
<td>10.3 Basic components of a protection system</td>
<td>151</td>
</tr>
<tr>
<td>10.4 Protection of distribution systems</td>
<td>152</td>
</tr>
<tr>
<td>10.5 Types of faults in electrical systems</td>
<td>152</td>
</tr>
<tr>
<td>10.6 Detection of fault currents</td>
<td>155</td>
</tr>
<tr>
<td>10.7 Fuses for protection</td>
<td>156</td>
</tr>
<tr>
<td>10.8 Protective relays</td>
<td>157</td>
</tr>
<tr>
<td>10.9 Electromechanical protection relay</td>
<td>158</td>
</tr>
<tr>
<td>10.10 Electronic protection relays</td>
<td>163</td>
</tr>
<tr>
<td>10.11 Coordination of protection</td>
<td>169</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chapter 11— Electrical Cables</th>
<th>179</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.1 Introduction</td>
<td>179</td>
</tr>
<tr>
<td>11.2 Types and construction of cables</td>
<td>180</td>
</tr>
<tr>
<td>11.3 Basic design and selection</td>
<td>182</td>
</tr>
<tr>
<td>Chapter 11—Cables and Electrical Systems</td>
<td>183</td>
</tr>
<tr>
<td>--</td>
<td>-----</td>
</tr>
<tr>
<td>11.4 Insulating materials for LV and HV cables</td>
<td>183</td>
</tr>
<tr>
<td>11.5 Accessories for cable installation</td>
<td>184</td>
</tr>
<tr>
<td>11.6 High voltage power transmission using cables</td>
<td>184</td>
</tr>
<tr>
<td>11.7 New technologies – superconductivity for high capacity cables</td>
<td>184</td>
</tr>
<tr>
<td>11.8 Failure of cables</td>
<td>185</td>
</tr>
<tr>
<td>11.9 Fault detection</td>
<td>189</td>
</tr>
<tr>
<td>11.10 Summary</td>
<td>194</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chapter 12—DC Power Supply Equipment</th>
<th>197</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.1 Need for DC power</td>
<td>197</td>
</tr>
<tr>
<td>12.2 Battery principles</td>
<td>198</td>
</tr>
<tr>
<td>12.3 Battery charger</td>
<td>202</td>
</tr>
<tr>
<td>12.4 Construction of battery chargers</td>
<td>204</td>
</tr>
<tr>
<td>12.5 Battery charger maintenance guide</td>
<td>204</td>
</tr>
<tr>
<td>12.6 Arrangement of DC supplies</td>
<td>206</td>
</tr>
<tr>
<td>12.7 Grounding of DC supplies</td>
<td>207</td>
</tr>
<tr>
<td>12.8 Tip circuit supervision</td>
<td>208</td>
</tr>
<tr>
<td>12.9 Reasons why breakers and contactors fail to trip</td>
<td>209</td>
</tr>
<tr>
<td>12.10 Capacity storage trip units</td>
<td>211</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chapter 13—Electrical Safety and Role of Earthing</th>
<th>213</th>
</tr>
</thead>
<tbody>
<tr>
<td>13.1 Overview</td>
<td>213</td>
</tr>
<tr>
<td>13.2 Hazards posed by electrical equipment</td>
<td>214</td>
</tr>
<tr>
<td>13.3 Electrical shock hazard - definitions</td>
<td>216</td>
</tr>
<tr>
<td>13.4 Electrical shock by direct and indirect contact</td>
<td>219</td>
</tr>
<tr>
<td>13.5 Role of protective earthing</td>
<td>222</td>
</tr>
<tr>
<td>13.6 Indirect contact hazard – importance of protection</td>
<td>226</td>
</tr>
<tr>
<td>13.7 Sensing of earth faults</td>
<td>227</td>
</tr>
<tr>
<td>13.8 Equipotential bonding for safety against indirect contact</td>
<td>228</td>
</tr>
<tr>
<td>13.9 Use of Personal Protective Equipment (PPE)</td>
<td>231</td>
</tr>
<tr>
<td>13.10 Arc flash danger in electrical equipment</td>
<td>232</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chapter 14—Power Quality Problems and Solutions</th>
<th>235</th>
</tr>
</thead>
<tbody>
<tr>
<td>14.1 Introduction</td>
<td>235</td>
</tr>
<tr>
<td>14.2 Limits on electrical parameters</td>
<td>236</td>
</tr>
<tr>
<td>14.3 What is power quality?</td>
<td>238</td>
</tr>
<tr>
<td>14.4 Power quality indicators</td>
<td>239</td>
</tr>
</tbody>
</table>
14.5 Power quality improvement measures 246
14.6 Need for improving power quality 252
14.7 Summary 253

Chapter 15—New Era of Power System Automation 255
15.1 Definition of the term 255
15.2 What is power system automation? 255
15.3 Power system automation architecture 257

Chapter 16—Asset Management of Power Distribution Equipment 261
16.1 Overview 261
16.2 Maintenance of electrical switchgear 262
16.3 Insulation deterioration 269
16.4 Switchgear diagnostic techniques 271
16.5 Substation battery condition and monitoring 282
16.6 Circuit breakers measurements 284
16.7 Switchgear maintenance procedures 293
16.8 Problems that may be found during switchgear maintenance 298
16.9 Defect management 299
16.10 Case studies of switchgear defects 301

Appendix A—Fault calculations in electrical systems 305
Appendix B—Power Factor Compensation 325