
This manual aims to give practical advice from experts in the field, to assist you to correctly plan, program and install a PLC with a shorter learning curve and more confidence. While the manual is ideal for electricians, technicians and engineers who are new to PLCs, much of the material covered will be of value to those who already have some basic skills, but need a wider perspective for larger and more challenging tasks ahead.
The manual includes contributions from a number of experts and will become a valuable reference document in your work. The information covered advances from the basics to challenge even the most experienced engineer in the industry today.
Download Chapter List
Background to SCADA
Background to SCADA
1.1 Introduction and brief history of SCADA
The SCADA Workshop, for which this manual is provided, is designed to provide the attendee with a thorough understanding of the fundamental concepts and the practical issues of SCADA systems. Particular emphasis has been placed on the practical aspects of SCADA systems with a view to the future. Formulae and details that can be found in specialised manufacturer manuals have been purposely omitted in favour of concepts and definitions.
This chapter provides an introduction to the fundamental principles and terminology used in the field of SCADA. It is a summary of the main subjects to be covered throughout the manual.
SCADA (Supervisory Control and Data Acquisition) has been around as long as there have been control systems. The first “SCADA” systems utilised data acquisition by means of panels of meters, lights and strip chart recorders. Supervisory control was exercised by the operator manually operating various control knobs. These devices were and still are used to do supervisory control and data acquisition on plants, factories and power generating facilities. The following figure shows a sensor to panel system.
Figure 1.1
Sensors to Panel using 4 –20 mA or voltage.
The Sensor to Panel type of SCADA system has the following advantages:
The disadvantages of a direct panel to sensor system are;
1.2 Fundamental principles of modern SCADA systems
In modern manufacturing and industrial processes, mining industries, public and private utilities, leisure and security industries telemetry is often needed to connect equipment and systems separated by large distances. This can range from a few meters to thousands of kilometres. Telemetry is used to send commands, programs and receive monitoring information from these remote locations.
SCADA refers to the combination of telemetry and data acquisition. SCADA encompasses the collecting of the information, transferring it back to the central site, carrying out any necessary analysis and control and then displaying that information on a number of operator screens or displays. The required control actions are then conveyed back to the process.
In the early days of data acquisition relay logic was used to control production and plant systems. With the advent of the CPU and other electronic devices, manufacturers incorporated digital electronics into relay logic equipment. The PLC or Programmable Logic Controller is still one of the most widely used control systems in industry. As needs grew to monitor and control more devices in the plant, the PLCs were distributed and the systems became more intelligent and smaller in size. PLCs and DCS or (Distributed Control Systems) are used as shown below.
Figure 1.2
PC to PLC or DCS with a fieldbus and sensors
The advantages of the PLC / DCS SCADA system are:
The disadvantages are;
As the requirement for smaller and smarter systems grew, sensors were designed with the intelligence of PLCs and DCSs. These devices are known as IEDs (Intelligent Electronic Devices). The IEDs are connected on a fieldbus such as Profibus, DeviceNet or Foundation Fieldbus to the PC. They include enough intelligence to acquire data, communicate to other devices and hold their part of the overall program. Each of these Super Smart Sensors can have more than one sensor on board. Typically an IED could combine an Analog Input Sensor, Analog Output, PID control, communication system and program memory in the one device.
Figure 1.3
PC to IED using a fieldbus
The advantages of the PC to IED fieldbus system are;
The Disadvantages of a PC to IED system are:
1.3 SCADA hardware
A SCADA System consists of a number of Remote Terminal Units (or RTUs) collecting field data and sending that data back to a master station via a communications system. The master station displays the acquired data and also allows the operator to perform remote control tasks.
The accurate and timely data allows for optimisation of the plant operation and process. A further benefit is more efficient, reliable and most importantly, safer operations. This all results in a lower cost of operation compared to earlier non-automated systems.
On a more complex SCADA system there are essentially five levels or hierarchies:
The RTU provides an interface to the field analog and digital sensors situated at each remote site.
The communications system provides the pathway for communications between the master station and the remote sites. This communication system can be wire, fibre optic, radio, telephone line, microwave and possibly even satellite. Specific protocols and error detection philosophies are used for efficient and optimum transfer of data.
The master station (or sub-masters) gather data from the various RTUs and generally provide an operator interface for display of information and control of the remote sites. In large telemetry systems, sub-master sites gather information from remote sites and act as a relay back to the control master station.
1.4 SCADA software
SCADA Software can be divided into two types, Proprietary or Open. Companies develop proprietary software to communicate to their hardware. These systems are sold as “turn key” solutions. The main problem with these systems is the overwhelming reliance on the supplier of the system. Open software systems have gained popularity because of the Interoperability they bring to the system. Interoperability is the ability to mix different manufacturers equipment on the same system.
Citect and WonderWare are just two of the open software packages available on the market for SCADA systems. Some packages are now including asset management integrated within the SCADA system. The typical components of a SCADA system are indicated in the next diagram.
Figure 1.4
Typical SCADA system
Key Features of SCADA Software
1.5 Landlines for SCADA
Even with the reduced amount of wire when using a PC to IED system there can and usually is a lot of wire in the typical SCADA system. This wire brings its own problems with the main problem being electrical noise and interference.
Interference and noise are important factors to consider when designing and installing a data communication system with particular considerations required to avoid electrical interference. Noise can be defined as the random generated undesired signal that corrupts (or interferes with) the original (or desired) signal. This noise can get into the cable or wire in many ways. It is up to the designer to develop a system that will have a minimum of noise from the beginning. Because SCADA systems typically use small voltage they are inherently susceptible to noise.
The use of twisted pair shielded Cat5 wire is a requirement on most systems. Using good wire coupled with correct installation techniques ensures the system will be as noise free as possible.
Fibre Optic cable is gaining popularity because of its noise immunity. At the moment most installations use glass fibres, but in some industrial areas plastic fibres will be increasingly used.
Figure 1.5
Glass Fibre Optic cables
Future data communications will be divided up between Radio, Fibre Optic and some Infared systems. Wire will be relegated to suppling power. And as power requirements of electronics become minimal, even the need for power will be reduced.
1.6 SCADA and Local Area Networks
Local Area Networks (LAN) are all about sharing information and resources. To enable all the nodes on the SCADA network to share information, they must be connected by some transmission medium. The method of connection is known as the network topology.
Nodes need to share this transmission medium in such a way as to allow all nodes access to the medium without disrupting an established sender.
A LAN is a communications path between computers, file-servers, terminals, workstations and various other intelligent peripheral equipment, which are generally referred to as Devices or Hosts. A LAN allows access to devices to be shared by several users, with full connectivity between all stations on the network. A LAN is usually owned and administered by a private owner and is located within a localised group of buildings.
Ethernet is the most widely use LAN today because it is cheap and easy to use. Connection of the SCADA network to the LAN allows anyone within the company with the right software and permission, to access the system. Since the data is held in a database the user can be limited to reading the information. Security issues are obviously a concern, but can be addressed.
Figure 1.6
Ethernet used to transfer data on a SCADA system
1.7 Modem use in SCADA systems
Figure 1.7
PC to RTU Using a Modem
Often in SCADA systems the RTU (Remote Terminal Unit (PLC, DCS or IED)) is located at a remote location. This distance can vary from tens of metres to thousands of Kilometres. One of the most cost-effective ways of communicating with the RTU over long distances can be by dialup telephone connection. With this system the devices needed are a PC, two dialup modems and the RTU (assuming that the RTU has a built in COM port). The modems are put in the auto-answer mode and the RTU can dial into the PC or the PC can dial the RTU. The software to do this is readily available from RTU manufacturers. The Modems can be bought off the shelf at the local computer store.
Line Modems are used to connect RTUs to a network over a pair of wires. These systems are usually fairly short (up to 1 Kilometre) and use FSK (Frequency Shift Keying) to communicate. Line modems are used to communicate to RTUs when RS 232 or RS 485 communication systems are not practical. The bit rates used on this type of system are usually slow, 1200 to 9600 bps.
1.8 Computer sites and troubleshooting
Computers and RTUs usually run without problems for a long time if left to themselves. Maintenance tasks could include daily, weekly, monthly or annual checks. When maintenance is necessary, the technician or engineer may need to check the following equipment on a regular basis.
Two main rules that are always followed in repair and maintenance of electronics systems are:
Technicians and engineers have caused more problems, than they started with, by doing stupid things like cleaning the equipment because it was slightly dusty. Or trying to get that one more .01 dB of power out of a radio and blown the amplifier in the process.
Figure 1.8
Components that could need maintenance in a SCADA system
1.9 System implementation
When first planning and designing a SCADA system, consideration should be given to integrating new SCADA systems into existing communication networks in order to avoid the substantial cost of setting up new infrastructure and communications facilities. This may be carried out through existing LANs, private telephone systems or existing radio systems used for mobile vehicle communications. Careful engineering must be carried out to ensure that overlaying of the SCADA system on to an existing communication network does not degrade or interfere with the existing facilities.
Figure 1.9
Front Panel Display of SCADA Software and its Block Diagram
If a new system is to be implemented, consideration must be given to the quality of the system to be installed. No company has an endless budget. Weighing up economic considerations against performance and integrity requirements is vital in ensuring a satisfactorily working system at the end of the project. The availability of the communications links and the reliability of the equipment are important considerations when planning performance expectations of systems.
All the aforementioned factors will be discussed in detail in the Manual. They will then be tied together in a systematic approach to allow the reader to design, specify, install and maintain an effective telemetry and data acquisition system that is suitable for the industrial environment into which it is to be instal.
For some, the future holds an exciting vision of technology, enhancing our everyday lives and jobs. For others, it’s a somewhat bleaker view of a dystopian future, where humans are... View ArticleThe post Will a robot take your job? appeared first on EIT | Engineering Institute of Technology.
January is a time that we reflect on the past and plan ahead for the coming year. As we recover from the festivities of the holiday season, many of us... View ArticleThe post Engineering a better year ahead appeared first on EIT | Engineering Institute of Technology.
A career in engineering requires continual professional development to remain relevant and effective in today’s rapidly changing global society. There are currently more than 15 million engineers across various disciplines... View ArticleThe post Engineering: A lifelong learning journey appeared first on EIT | Engineering Institute of Technology.
We’re living in a time of rapid change. Technology trends, as a result of the COVID-19 pandemic, are allowing for more efficient workplace environments. As the engineering industry is characterized... View ArticleThe post Technology trends to prepare for in 2021 appeared first on EIT | Engineering Institute of Technology.
Dear EIT Community, Congratulations on completing 2020! A challenging year as we faced arguably the toughest health crisis of our generation, provoking extra thought into the solutions technical and Engineering... View ArticleThe post A letter from the 2020 EIT Student Ambassador appeared first on EIT | Engineering Institute of Technology.
Engineering graduates require an ever-increasing range of skills to maintain relevance within the job market. Communication skills are a vital component of this, recognized by both academia and industry alike.... View ArticleThe post The importance of communication skills for engineers appeared first on EIT | Engineering Institute of Technology.
Hendrik van Heerden is a skilled Mobile Crane Specialist and is also currently studying EIT’s Bachelor of Science (Mechanical Engineering) through our online delivery mode. For his final year project,... View ArticleThe post EIT student designs 3D printed prosthetic controlled by an electronic glove appeared first on EIT | Engineering Institute of Technology.
If 2020 has taught the world anything, it is that the internet is an invaluable commodity. The COVID-19 pandemic digitally transformed almost every aspect of our daily lives. It also... View ArticleThe post Alphabet delivers wireless Internet using light beams from 20km away appeared first on EIT | Engineering Institute of Technology.
Rolls-Royce has recently announced their pledge to create 6,000 jobs in the United Kingdom as part of their plans to build 16 small nuclear power stations. The announcement comes with... View ArticleThe post Rolls-Royce plans 16 mini nuclear plants for the UK appeared first on EIT | Engineering Institute of Technology.
Calendared by the United Nations in 1989, Africa Industrialization Day represents a unique opportunity for policymakers, business leaders, development partners, and other individuals to raise awareness about the transformational opportunities... View ArticleThe post Is industrialization the key to poverty reduction in Africa? appeared first on EIT | Engineering Institute of Technology.
IDC Technologies © 1991 - 2021